RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

Enhancing Safety and Comfort in Homes

Presenters:Sharmalene Mendis-Millard (Director, Partners for Action)
Sumana Mitra (Research Assistant, Partners for Action)Research Team:Tyler Hull, Herry Chen, Sumana Mitra, Benedictus Haryanto
Cameron McGlade-Bouchard, Devon Jones, Monika MikhailAdvisors (Phase 2):Marzieh Riahinezhad & Alexander Hayes (National Research Council Canada)
Research Lead and Advisor:Sharmalene Mendis-Millard

Building Resilient Communities Conference, November 20, 2024 – Penticton, BC

Land Acknowledgement

We respectfully acknowledge that we are visiting the unceded lands of the Syilx Okanagan people

Image credit: **Okanagan Nation Alliance** (syilx.org/wellness/our-programs-and-services)

When we are talking about populations at risk to climate impacts, First Nations communities are disproportionately at risk (e.g., **81% of reserves are exposed to flooding**) (Chakraborty et al 2022)

Overview

1. About Partners for Action (P4A)

2. Why retrofit buildings for climate adaptation?

3. What we did: Develop a database of multi-hazard resilient retrofits

4. Select findings: How can we prepare our homes and buildings?

5. Lessons learned – and feedback from you, please!

Partners for Action

A research initiative that seeks to empower Canadians to become flood resilient by promoting awareness and preparedness actions that are inclusive and evidence-based

With founding support provided by:

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

SLIDE 4

Contact: p4a.info@uwaterloo.ca

UWATERLOO.CA/PARTNERS-FOR-ACTION/

Partners for Action

 Advancing flood resilience in Canada in the face of climate change and extreme weather through community-engaged and applied approaches

Applying an equity lens to climate action and adaptation work

SCAN HERE

P4A Resilient Retrofits Team

CURRENT Research Assistants

Felicia Watterodt

P4A Administration & Research Coordinator

FORMER Research Assistants

Cameron McGlade-Bouchard

Monika

Mikhail

Devon Jones

Sumana

Mitra

Herry

Chen

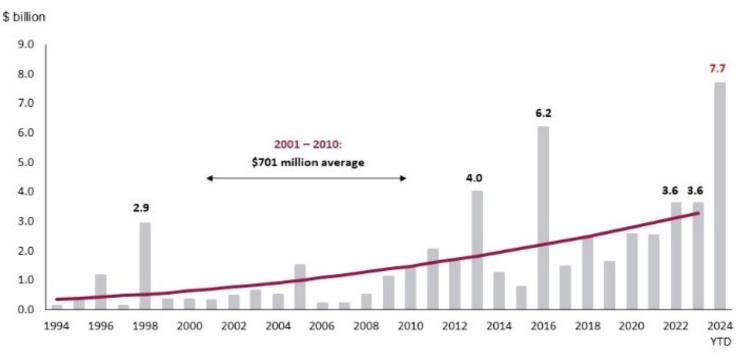
Benedictus Haryanto

Sharmalene Mendis-Millard

> Director, Partners for Action

Tyler Hull

Research Assistant, Team Lead Why retrofit buildings for climate adaptation?



Maligne Lodge in Jasper, AB (July 2024)

Source: Banff-Canmore Visitor Centre via Facebook cited in Energi Media (2024)

Climate hazards in Canada

CATASTROPHIC LOSSES IN CANADA IN \$000,000,000, 1994 TO 2024 AND TREND

Loss + Loss Adjustment Expenses in 2023 dollars
Estimated Trend

Sources 1994 to 2007: IBC, PCS Canada, Swiss Re, Deloitte Source 2008-2024: CatlQ

Sources: Insurance Bureau of Canada (2024b)

Insurance Basics 🐱 Stay Protected 🐱 Issues and Advocacy 🐱 Indust

Summer 2024 shatters records for severe weather damage: Over \$7 billion in insured losses from floods, fires and hailstorms

Sep 34, 2026 | NKTIONAL

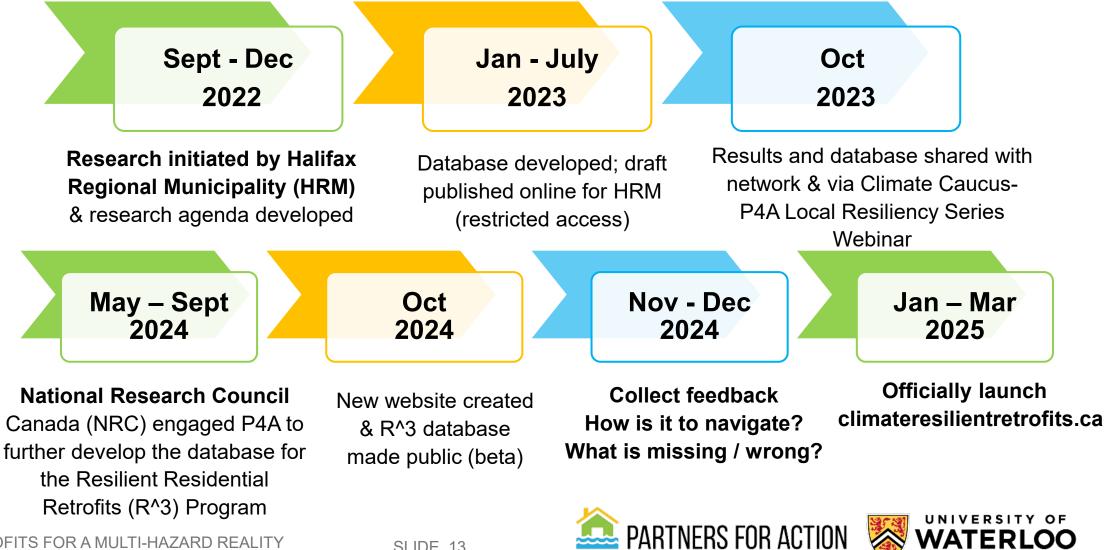
CLANSTE.

(2024a)

Join at menti.com | Use code 4119 6517

What we did (Part 1): Develop a framework & for handling the complexity of a multi-hazard reality

Research Questions


What are prevalent climate hazards that buildings need to adapt to?	Image: ShowImage: ShowImage: ShowFloodsEx. HeatWildfiresEx. WindIce & Snow						
How do hazards affect buildings?	 Define building archetypes and components Research how each hazard affects buildings Categorize impacts by building component 						
What will help protect buildings and their inhabitants against multiple hazards?	 Create a framework for organizing information Research retrofit measures for each hazard Summarize in plain language "Rate" each measure (Cost / Labour / Time) 						
How do measures for one or more hazards relate to each other?	 Identify relationships among measures (Conflicting / Coordinating / Complementary) 						

WATERL

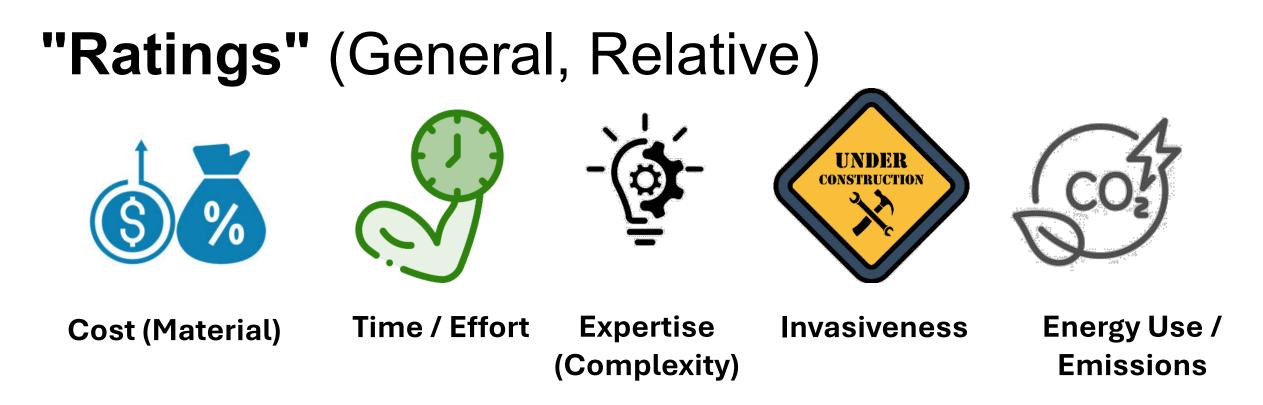
00

The evolution of this work

What we did (Part 2): Created a database of multihazard resilient retrofits – a unique tool that handles complexity

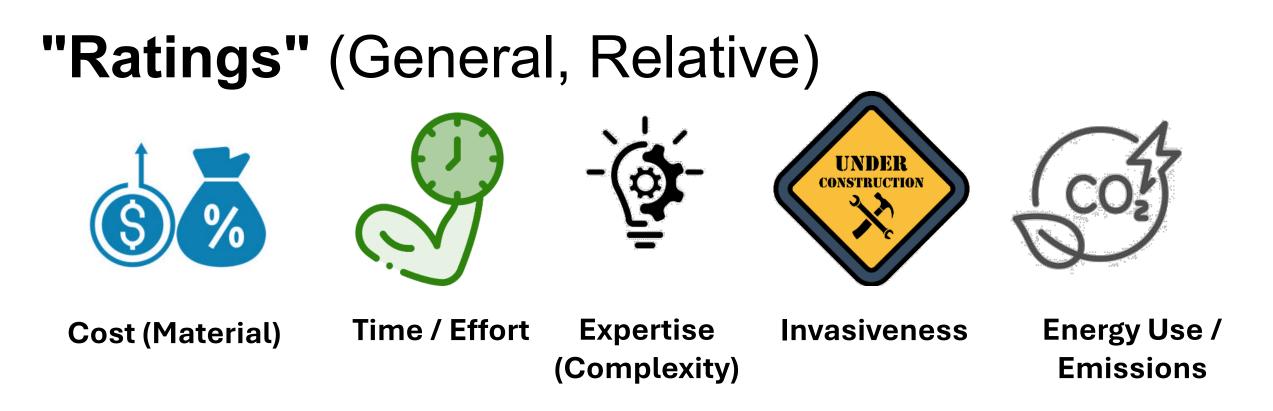
Multi-Hazard Resilient Retrofits Database

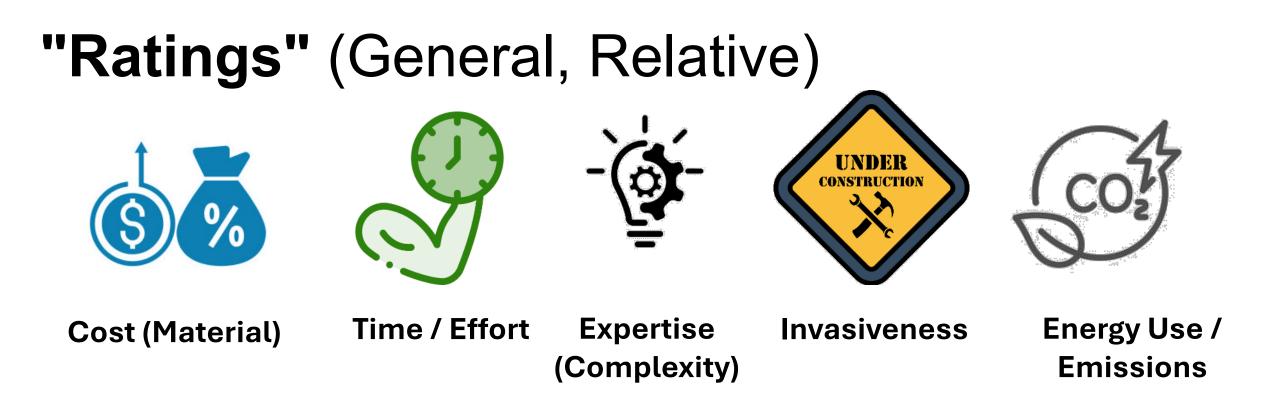
	Retrofit/Measure \vee	ID# ~	Building Area \sim	Hazard(s) 🗸 🗸	Problem ~	Adaptation Objective (Concise) \checkmark	Images	
1	Roof to wall connection (additional connectors)	EW1	Building Structure - Roof	Extreme wind	Wind uplift	Create continuous load path	Factor and a second sec	
2	Roof to wall connection (nails only)	EW2	Building Structure - Roof	Extreme wind	Wind uplift	Create continuous load path	A summary and the second s	
3	Sill plate connection to foundation		EW3	Building Structure - Walls	Extreme wind	Wind uplift	Create continuous load path	
				Building Structure - Foun				Carles Contraction
4	Wall to wall connections	EW4	Building Structure - Walls	Extreme wind	Wind uplift	Create continuous load path	And the second s	
5	Sill plate connections to framing	EW5	Building Structure - Walls	Extreme wind	Wind uplift	Create continuous load path		



Multi-Hazard Resilient Retrofits Database: Pop-Up

		Images	ignment of connections (See Classe 8.1.5.)			
Retrofit/Measure Roof to wall connection (additional co			Figure A.2: Fastening v raised-heel truss [%]			
D#	EW1					
Building Area	Building Structure - Roof		Continuous sheathing EW1 - Roof to Wall Connection.PNG			
-lazard(s)	Extreme wind	Objective Description (comprehensive)	Need to provide continuous load transfer of wind uplift force to foundation or part/complete building can be damaged.			
Problem	Wind uplift					
Adaptation Objective Concise)	-		Roof failures during high wind event typically begin at this connection. Typical 3 toe nailed connection required is not done properly (smaller nails, split wood, less than 3). Options include; engineering connectors (hurricane ties, truss screws), raised heel trusses with continuous sheathing, or connections design to meet 3.7 kN uplift force			

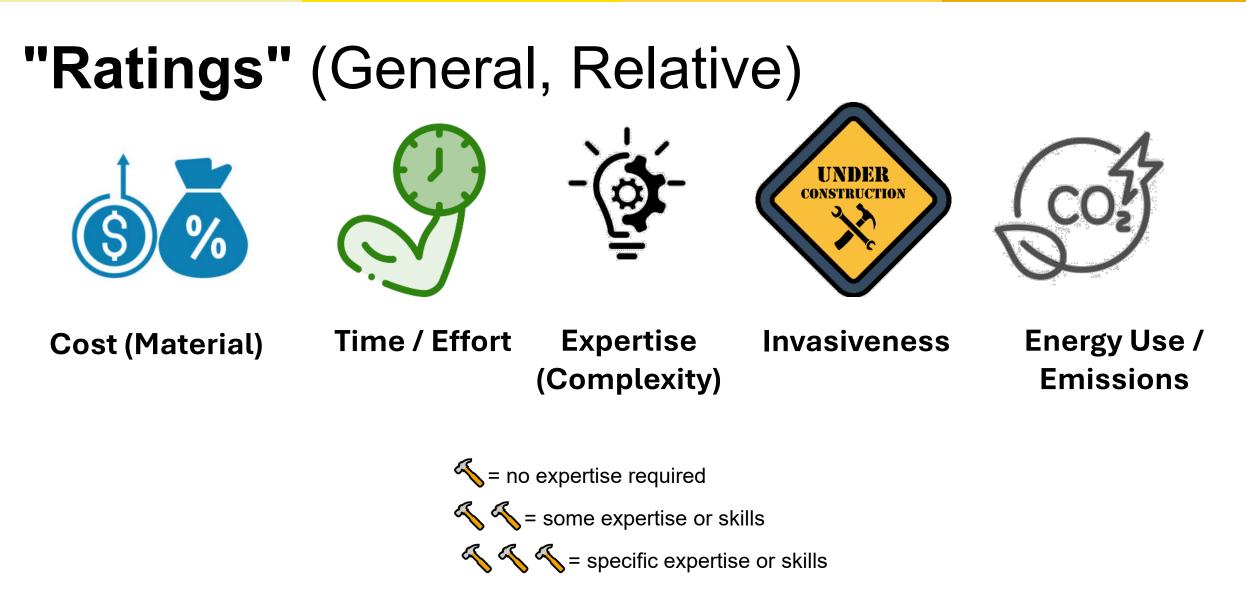




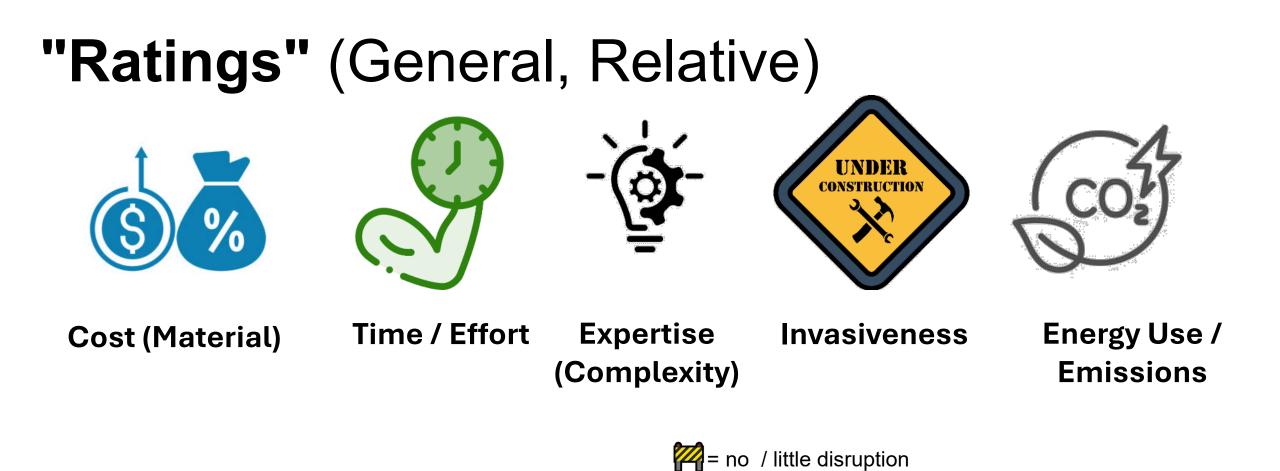
\$ = < \$500

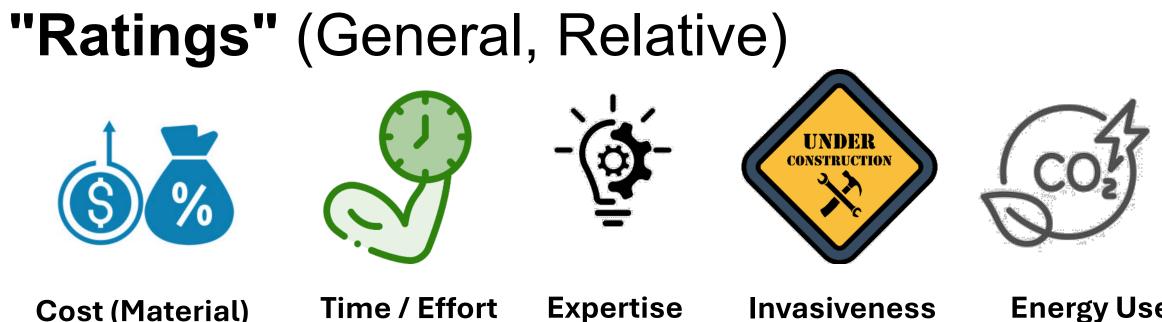
\$\$ = \$500-\$5000

\$\$\$ = > \$5000



= small / little effort with little planning
 = mid-size / some effort & planning
 = large / considerable effort & planning


RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY



Particular = some or extended disruption to daily life

Cost (Material)

Time / Effort (Complexity)

Invasiveness

Energy Use / Emissions

Increases / decreases

- energy efficiency 0
- greenhouse gas Ο emissions

Conflicting

A measure that works against another

Example: Vegetation can help with extreme heat but also increase wildfire risk

The "3 Cs"

A measure to consider alongside another for practicality and convenience, saving cost and time while addressing one or more objectives / hazards

Example: If doing A, you might as well do B

- Insulation
- Air-sealing / air tightness

Complementary

A measure that addresses multiple hazards or multiple adaptation objectives

Example: Airtight insulation protects against:

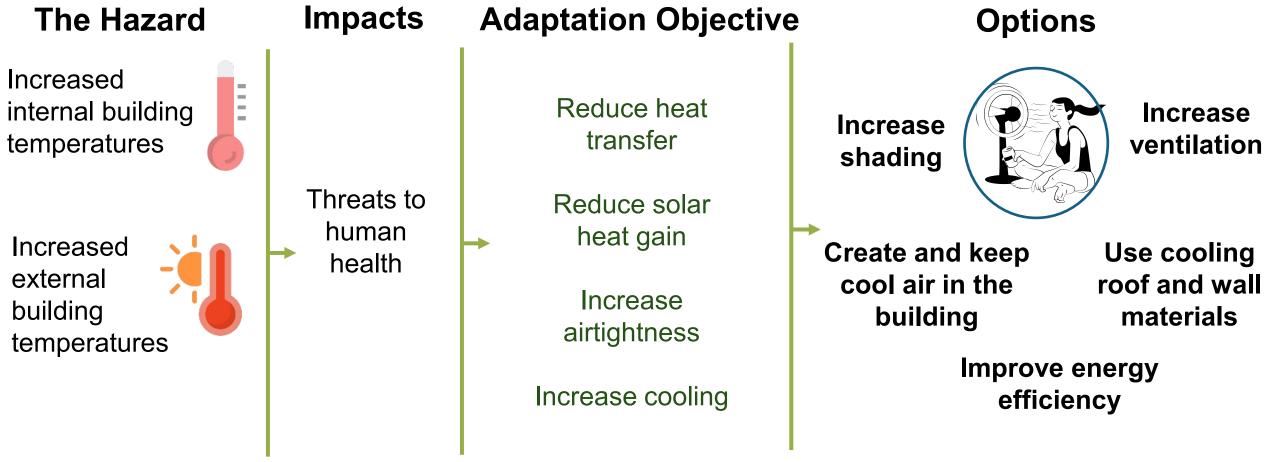
- Extreme Heat
 Floods
- Wildfires

Snow

Multi-Hazard Resilient Retrofits Database: Pop-Up

Roof to wall connection	on (additional connectors)					
Considerations	Connectors can be cheap and easy to installed when trusses and walls are			Retrofit Type	Physical	
	exposed. In retrofit scenario access to this connection can be difficult. Example connectors: Hurricane ties, Self-tapping screws	Cost (Material)	\$\$	Implementation Stage	Proactive	
Conflicting	No records			Building Archetype(s)		house Multi-unit residential
5		Time/Effort	00		Municipally d	wned & operated Commercial
Complementary	No records	Furnerties Deguired		Reference(s)	Sandink et	al. (2019)
Coordinated	EW/7: Deef to wall connection Wall top plate	Expertise Required			Palladium I	nsurance (2022)
	EW7: Roof to wall connection - Wall top plate	Invasiveness	(20 20 20 20	0		
	EW8: Roof Sheathing Fastening					
	EW9: Roof Sheathing Material	Energy Use/ Emissions				
	IS17: Ensure the structure is made to withstand higher snow accumulation (less snow melt with many retrofits applied to prevent ice dams)	Parameter to Evaluate	Wind spe	eeds		
		Design Value	EE2 Tornad	do (approximately 1kPa	pressure)	

UNIVERS


Select findings: How can we prepare our homes and buildings to be climate resilient?

Join at menti.com | Use code 4119 6517

Retrofitting for Extreme Heat Resilience

UNIVERSITY OF

PARTNERS FOR ACTION

Icons from IconScout

Image Source: World Economic Forum

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

Image Source: Al-Yasiri and Szabo (2021)

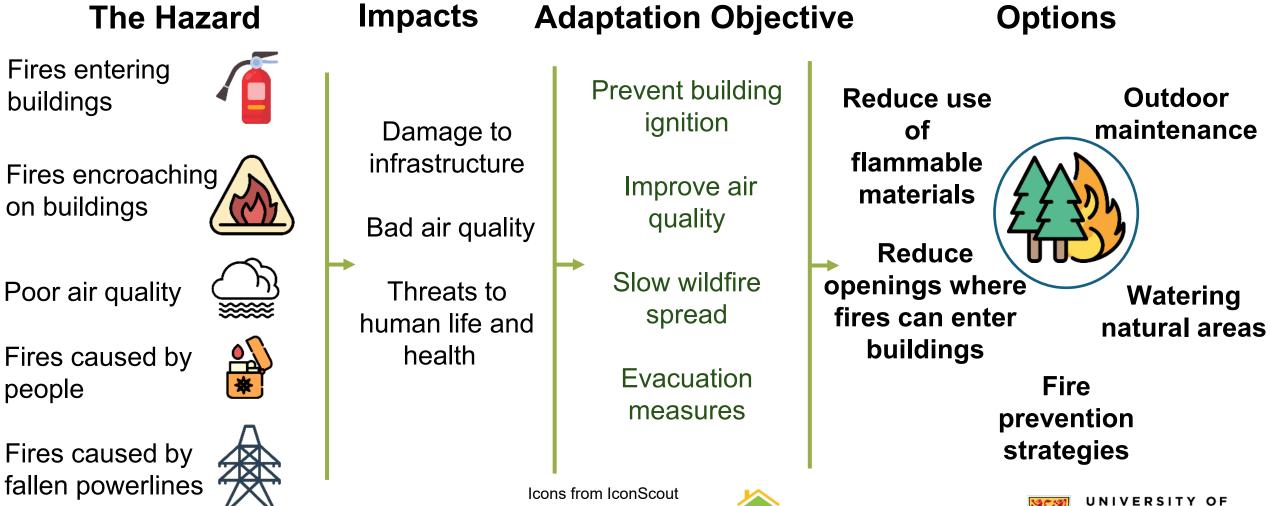
Example Retrofits - Extreme Heat

Increase airtightness

Source: EverLog Systems

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

Increase insulation


Source: Fine Home Building

SLIDE 29

Retrofitting for Wildfire Resilience

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

SLIDE 30

A

Example Retrofits - Wildfires



Fire-suppressed Forest

Ecologically managed Forest

Outdoor maintenance

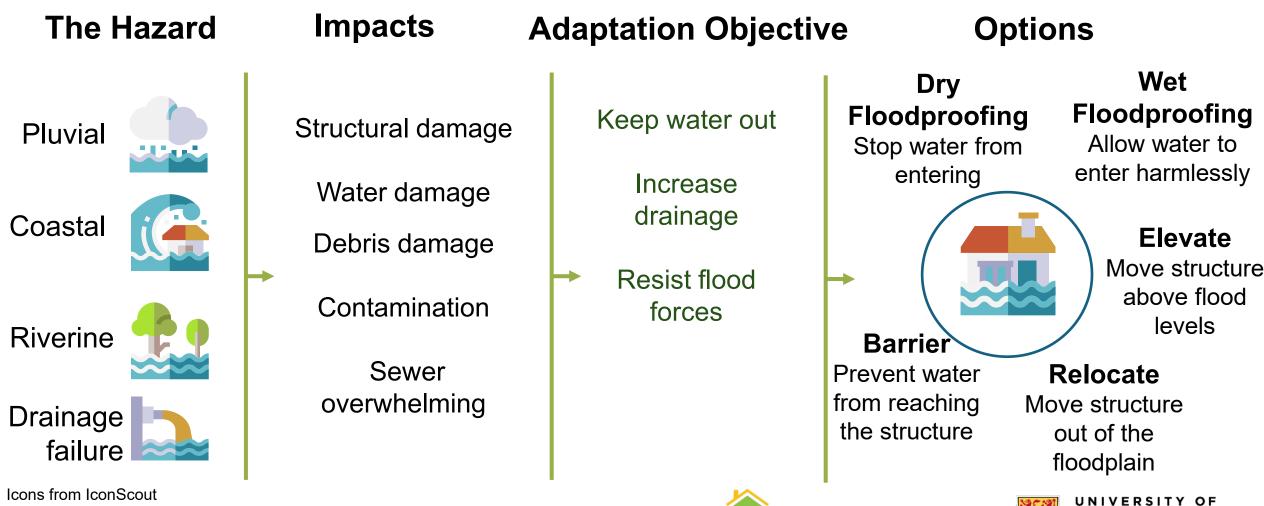
Source: The Nature Conservancy

SLIDE 31

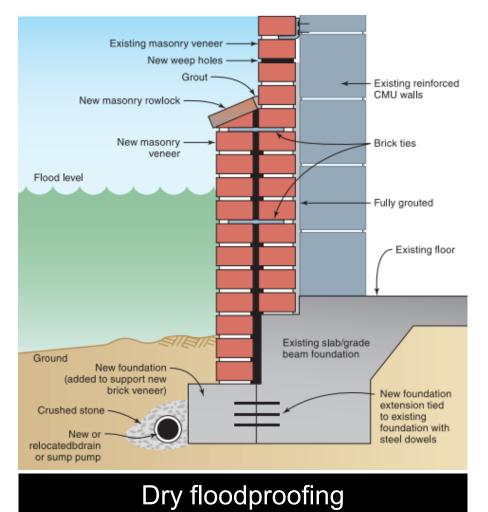
1 – Immediate Zone (0 to 5 ft): Install noncombustible ground cover. Use fire-resistant or noncombustible materials for decks, porches, railings, or fences that attach to the home. 2 - Intermediate Zone (5-30 ft): 3 Plant trees no closer than 30 feet to the home. Space tree crowns 18 feet apart or further on slopes. Trim branches up to 6 to 10 feet from ground and at least 10 feet from structures.

3 - Extended Zone (30-100 ft):

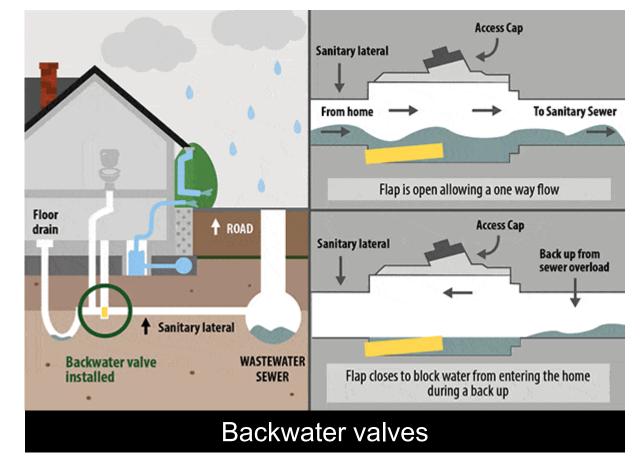
Remove vegetation next to outbuildings. For trees 30 to 60 ft from the home, space so mature canopies are at least 12 feet apart; for 60 to 100 feet from the home, space so tree canopies are at least 6 feet apart.



Source: Energy.gov


Retrofitting for Flood Resilience

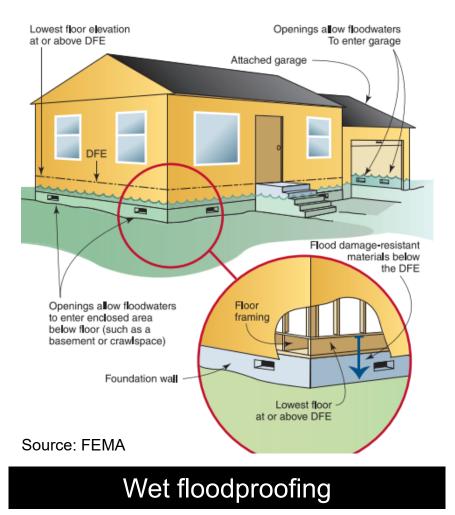
RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY



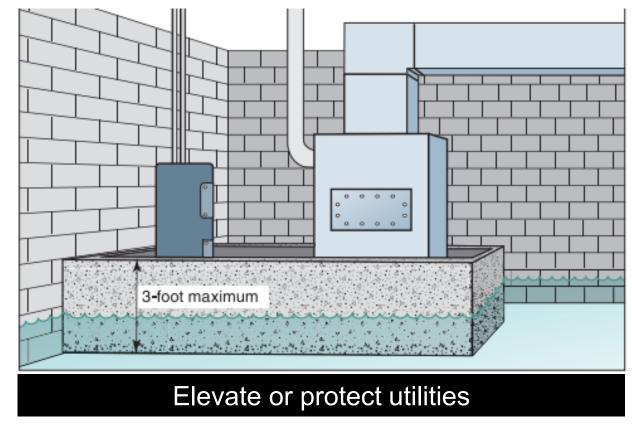
Example Retrofits - Flooding

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY Source: FEMA

SLIDE 33

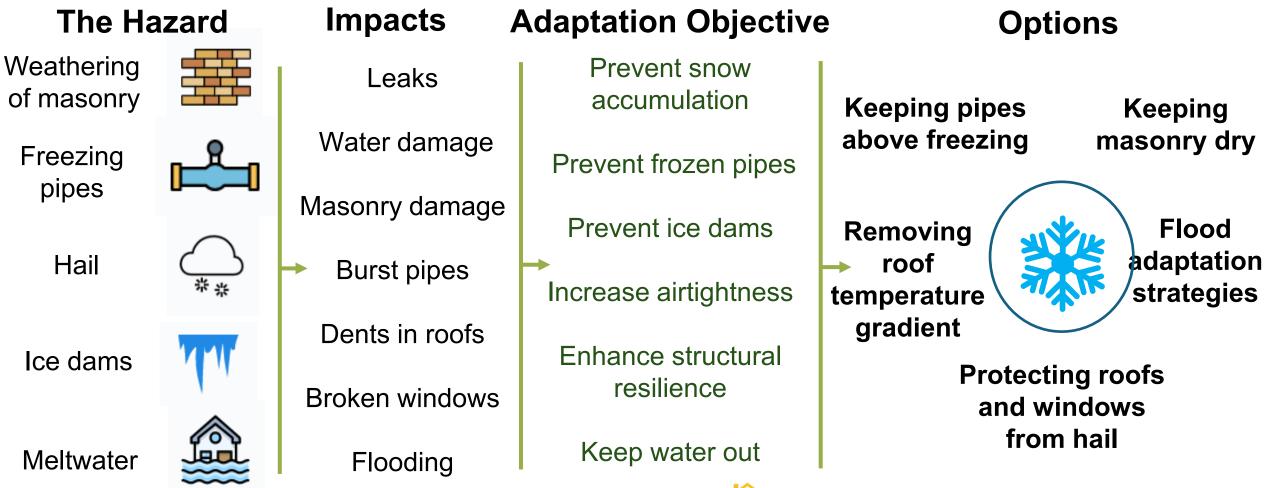


Source: Out of This World Plumbing Ottawa



RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

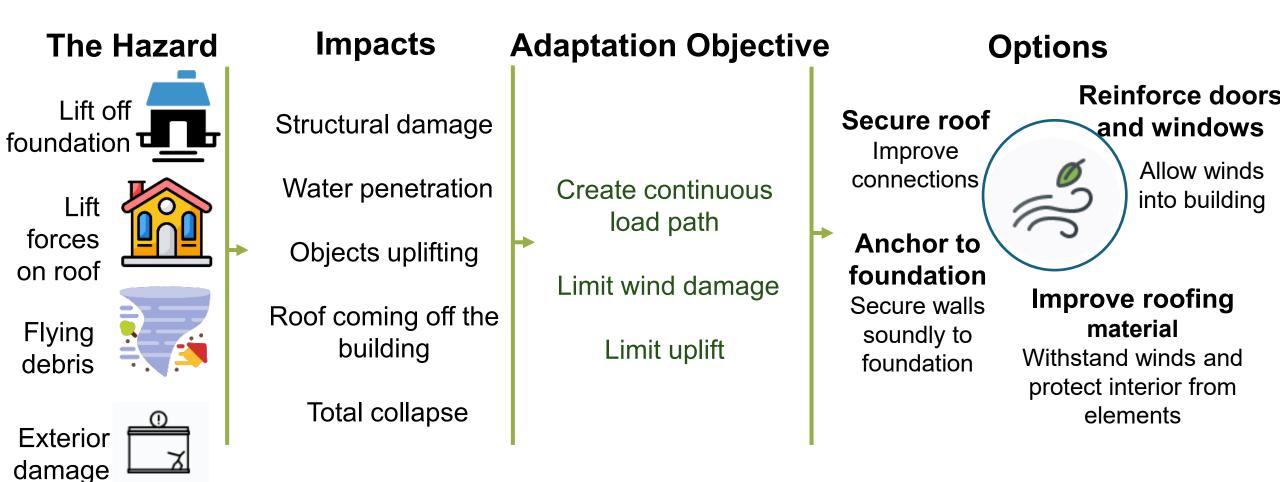
SLIDE 34



Source: FEMA

Retrofitting for Cold Weather Resilience

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY


SLIDE 35

Icons from IconScout

Retrofitting for Extreme Wind Resilience

Icons from IconScout

What is unique about this work, lessons learned, & feedback from you, please!

Database: Unique features

Synthesizes information about multiple hazards in one place

Organized by adaptation objective (+ hazard, building component)

"3 Cs" - Identifies how measures relate to each other against adaptation measure. Are they

- Conflicting (maladaptive)?
- Coordinating (do several things to be practical)?
- Complementary (one retrofit, multiple benefits)?

A start at integrating retrofits for adaptation & mitigation

Lessons Learned

How to synthesize and convey information to a broad audience

- Information about multiple hazards from different disciplines and sources for different audiences
- Convey technical information accurately, concisely, simply

How to make it dynamic

Adaptation objective as the backbone of a dynamic database

How to allow for variations among regions, different & new technologies

How to think holistically

- Relationships amongst measures (3 Cs)
- Adaptation with attention to mitigation

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

Future Work – funding permitting

• Regularly update to

- keep pace with new strategies & technologies
- upkeep the technical aspects
- Incorporate feedback

Research started that could be continued

- enabling initiatives
- differences for new builds
- what applies to non-residential buildings
- funding that communities can access

Climate Resilient Retrofits

Adapting Canada's existing building stock to weather a changing climate

- Explore hazard-specific and multi-hazard databases
- Access state-of-the-art research on adaptive retrofits
- Learn more about existing and emergent initiatives!

4		Building Area	Heartha v	Polition	Adaptation objective $L_{\rm e} \sim$	inage -
<	Austion Longitud	Building Structure - Real	Echene wind	Wed split	Grada continuous load	1
	-terl to real connection (ratio artig)	Building Structure - Reef	Ecourse wind	(Wind split)	Grada continueus load	
	Sil plate convection to foundation	Building Diructure - Walls Building Structure - Foundation	Lemma wind	Wind uplify	Crash continuous load	4444
	hal to sal corrections	Building Dourstore : Walk	[hinterscains]	(Minel aplilit)	Create continuous load	ete 🛊
	Sill plate convections to Transing	Building Diverture - Walls	Detrame wind	Mind uplik	Crash metinueus load	
	Aid to fairs corrections	Building Dirambers - Walls	Intraraction i	(Wind aplift)	Craits continuous load	THE -
	Reaf to wall connection - Reaf top-picte	Bulling Drunture : Real	Downeniné	Mind split:	Craste continuous load	齎
	Real Drughture Fastering	Building Drughurs - Real	Talance wind	West unlife	Unit with damage	total com within .

ClimateResilientRetrofits.ca

 If you are experiencing multiple hazards, how will this tool help you? What will you search for?

• How is it to navigate?

• What is missing? Confusing? Inaccurate?

Acknowledgements

This research was done in partnership with Halifax Regional Municipality in 2022-2023 as part of the HalifACT Climate Action Plan, and with National Research **Council Canada (NRC)** in 2024 for the *Climate Resilient Built Environment* Initiative, in support of delivering the Government of Canada's Adaptation Action Plan, and towards achieving commitments under the National Adaptation Strategy

*

National Research Council Canada

Conseil national de recherches Canada

BC Climate Resilience Summit 2025 Vancouver, Robson Square • March 3rd/4th

Please Join us for the Inaugural BC Climate Resilience Summit! Registration & Updates @urbc.ca

Contact:

Sharmalene Mendis-Millard

sharmalene.mendismillard@uwaterloo.ca

Climate Resilient Retrofits

Adapting Canada's existing building stock to withstand a changing climate

https://climateresilientretrofits.ca

National Research Council Canada Conseil national de recherches Canada

Climate Resilient Retrofits

Adapting Canada's existing building stock to weather a changing climate

- Explore hazard-specific and multi-hazard databases
- Access state-of-the-art research on adaptive retrofits
- Learn more about existing and emergent initiatives!

4		Building Area	Heartha v	Polition	Adaptation objective $L_{\rm e} \sim$	inage -
<	Austion Longitud	Building Structure - Real	Echene wind	Wed split	Grada continuous load	1
	-terl to real connection (ratio artig)	Building Structure - Reef	Ecourse wind	(Wind split)	Grada continueus load	
	Sil plate convection to foundation	Building Diructure - Walls Building Structure - Foundation	Lemma wind	Wind uplify	Crash continuous load	4444
	hal to sal corrections	Building Dourstore : Walk	[hinterscains]	(Minel aplilit)	Create continuous load	ete 🛊
	Sill plate convections to Transing	Building Diverture - Walls	Detrame wind	Mind uplik	Crash metinueus load	
	Aid to fairs corrections	Building Dirambers - Walls	Intraraction	(Wind aplift)	Craits continuous load	THE -
	Reaf to wall connection - Reaf top-picte	Bulling Drunture : Real	Downeniné	Mind split:	Craste continuous load	齎
	Real Drughture Fastering	Building Drughurs - Real	Talance wind	West unlife	Unit with damage	total com within .

ClimateResilientRetrofits.ca

 If you are experiencing multiple hazards, how will this tool help you? What will you search for?

• How is it to navigate?

• What is missing? Confusing? Inaccurate?

Discussion

- What hazard impacts have you experienced?
- When you are planning a renovation or repairs, are you thinking of retrofits for climate hazards?
- Who is most impacted by climate hazards, and why?

Please let us know what you think about ClimateResilientRetrofits.ca!

References

- Chakraborty, L., Thistlethwaite, J., Minano, A. et al. Leveraging Hazard, Exposure, and Social Vulnerability Data to Assess Flood Risk to Indigenous Communities in Canada. Int J Disaster Risk Sci 12, 821–838 (2021). https://doi.org/10.1007/s13753-021-00383-1
- Insurance Bureau of Canada. (2024a, August 19). July flash floods in Toronto and southern Ontario caused over \$940 million in insured damage. <u>https://www.ibc.ca/news-insights/news/july-flash-floods-in-toronto-and-southern-ontario-caused-over-940-million-in-insured-damage</u>
- Insurance Bureau of Canada. (2024b, September 4). *Four Catastrophic Summer Events Lead to Record Number of Insurance Claims.* www.ibc.ca/news-insights/news/four-catastrophic-summer-events-lead-to-record-number-of-insurance-claims.
- Insurance Bureau of Canada. (2024c, September 24).Summer 2024 shatters records for severe weather damage: Over \$7 billion in insured losses from floods, fires and hailstorms. <u>https://www.ibc.ca/news-insights/news/summer-2024-shatters-records-for-severe-weather-damage-over-7-billion-in-insured-losses-from-floods-fires-and-hailstorms</u>
- Partners for Action. (2024). Climate Resilient Retrofits Database-All Hazards. https://www.climateresilientretrofits.ca/all-hazards/

Please let us know what you think about ClimateResilientRetrofits.ca!

"Ratings" Criteria

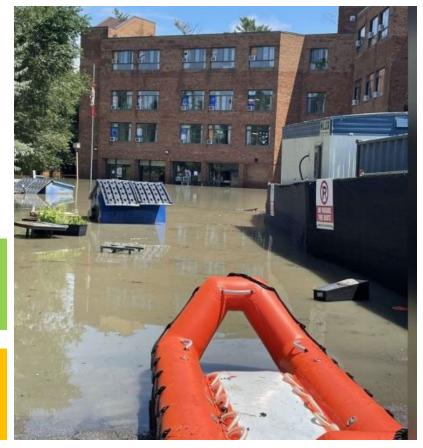
Cost (Material)	An estimated range of what materials might cost (labour costs vary greatly, so are excluded)	\$ = less than \$500, \$\$ = \$500-\$5000, \$\$\$ = greater than \$5000
Time/Effort	An estimate of the overall duration, amount of work, and planning required to complete installation	
Expertise Required	Approximately how much specialized knowledge, skills, and experience are needed, with the caveat that these can vary depending on the complexity of the building and site conditions	The range is between retrofits that could potentially be done by residents to those that require more specialized skills and a contractor. \checkmark = no expertise required, \checkmark \checkmark = some expertise or skills required, \checkmark \checkmark = specific expertise or skills required

UNIVERSITY OF

"Ratings" Criteria

Invasiveness	The degree to which the retrofitting process disrupts or impacts the existing structure, its occupants, and daily life	Image: major disruption, image: major disruption or temporary move required
Energy/GHG Effects	Immediate or obvious energy use, energy efficiency gains, or greenhouse gas emissions. Not accounted for: embodied carbon in products and materials	Example: Insulation usually increases energy efficiency, providing energy savings by reducing the amount of heat or cooling lost. Air conditioners provide cooling needed to prevent heat stroke but require energy and emit greenhouse gases. Heat pumps also cool rooms but do not emit greenhouse gases

Climate hazards in Canada in 2024


TORONTO News

Mississauga, Ont., nursing home evacuated of more than 100 residents amid flooding

https://toronto.ctvnews.ca/mississauga-ont-nursing-home-evacuated-of-more-than-100-residents-amid-flooding-1.6968269

"July flash floods in Toronto and southern Ontario caused over **\$940 million in insured damage**"

"228,000 insurance claims, a **406% increase** compared to previous 20-year average"

Sources: Insurance Bureau of Canada (2024a,b) C

CTV News (2024)

RESILIENT RETROFITS FOR A MULTI-HAZARD REALITY

- What parts of the building might you tackle?
- Who has control over what happens on the property?

